概述 过滤式特征选择根据特征对标签的重要性对特征进行筛选,特征重要性较高的特征,提升训练的精度和效率。 输入 参数 子参数 参数说明 inputs dataframe inputs为字典类型,dataframe为pyspark中的DataF…
概述 用线性模型计算训练数据的特征重要性。 输入 参数 子参数 参数说明 inputs dataframe inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 输出 特征的重要性和特征在线性模型中的we…
二值化 卡方选择 派生 特征转换 FP-growth 最小最大规范化 正则化 独热编码 主成分分析 离散化 标准化 字符串标签化 奇异值分解 过滤式特征选择 线性特征重要性 特征尺度变换 特征异常检测 特征异常平滑 gbdt编码模型训练 g…
概述 支持对稠密或稀疏的数值类特征进行常见的尺度变换,支持常见的log2、log10、ln、abs及sqrt等尺度变化函数。 输入 参数 子参数 参数说明 inputs dataframe inputs为字典类型,dataframe为pys…
概述 特征异常检测的方法包括箱型图(Box-plot)和AVF(Attribute Value Frequency) 箱型图用于检测连续值类特征的数据,根据四分位数检测异常特征。 AVF用于检测枚举值类特征的数据,根据枚举特征的取值频率及阈…
概述 特征异常平滑算子用于将数据中的异常数据平滑到一定的区间,可选择采用箱线图、阈值、百分位和z-score的方法确定平滑区间。 z-score方式:计算所需要平滑的特征的均值mean和标准差std,并引入置信因子cl 平滑区间上界: 平滑…
概述 利用训练好的gbdt分类模型对输入的特征进行离散化处理。对每棵树的叶子节点进行编码,预测的时候遍历到叶子节点对应位置的编码为1,该树其余节点的编码为0。该节点主要用于生产gbdt的分类模型,并存储到输入参数对应的位置上。 输入 参数 …
概述 利用训练好的gbdt分类模型对输入的特征进行离散化处理。对每棵树的叶子节点进行编码,预测的时候遍历到叶子节点对应位置的编码为1,该树其余节点的编码为0。该节点主要用于读取gbdt编码模型训练阶段保存的模型,并对数据进行离散化编码。 输…
概述 将用户指定的一些列进行one-hot编码。 输入 参数 子参数 参数说明 inputs dataframe inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 输出 数据集 参数说明 参数 子参数…
概述 主成分分析(Principal Components Analysis,PCA)是统计分析中简化数据集的一种算法,常用于减少数据集的维数,同时保持数据集中对方差贡献最大的特征。该算法主要通过对原始数据矩阵进行奇异值分解(Singula…