训练作业运行结束后,ModelArts可为您的模型进行评估,并且给出调优诊断和建议。 针对使用预置算法创建训练作业,无需任何配置,即可查看此评估结果(由于每个模型情况不同,系统将自动根据您的模型指标情况,给出一些调优建议,请仔细阅读界面中的…
ModelArts新版训练中新增了超参搜索功能,自动实现模型超参搜索,为您的模型匹配最优的超参。 在模型训练过程中,有很多超参需要根据任务进行调整,比如learning_rate、weight_decay等等,这一工作往往需要一个有经验的算…
如果订阅算法不能满足需求或者用户希望迁移本地算法至ModelArts上训练,可以考虑使用ModelArts支持的预置框架实现算法构建。这种方式在创建算法时被称为“使用预置框架”模式。 以下章节介绍了如何使用预置框架创建算法。 如果需要了解M…
TPE算法全称Tree-structured Parzen Estimator,是一种利用高斯混合模型来学习超参模型的算法。在每次试验中,对于每个超参,TPE为与最佳目标值相关的超参维护一个高斯混合模型l(x),为剩余的超参维护另一个高斯混…
模拟退火算法即Anneal算法,是随机搜索中一个简单但有效的变体,它利用了响应曲面中的平滑度。退火速率不自适应。Anneal算法从先前采样的一个试验点作为起点,然后从与先验分布相似的分布中采样每组超参数,但其密度更集中在我们选择的试验点周围…
训练作业创建成功,但是在运行过程中,由于一些故障导致作业运行失败。 首次请检查您的帐户是否欠费。如果帐号状态正常。请针对不同类型的作业进行排查。 针对图像分类、声音分类、文本分类的作业,排查思路请参见确保OBS中的数据存在、检查OBS的访问…
本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用 Linux x86_64 架构的主…
本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用 Linux x86_64 架构的主机…
本章节介绍基于Pytorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上…
在DistributedDataParallel中,不同进程分别从原始数据中加载batch的数据,最终将各个进程的梯度进行平均作为最终梯度,由于样本量更大,因此计算出的梯度更加可靠,可以适当增大学习率。 以下对resnet18在cifar1…