数据生成技术简介 图像生成利用Gan网络依据已知的数据集生成新的数据集。Gan是一个包含生成器和判别器的网络,生成器从潜在空间中随机取样作为输入,其输出结果需要尽量模仿训练集中的真实样本。判别器的输入则为真实样本或生成网络的输出,其目的是将…
训练日志定义 训练日志用于记录训练作业运行过程和异常信息,为快速定位作业运行中出现的问题提供详细信息。用户代码中的标准输出、标准错误信息会在训练日志中呈现。在ModelArts中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日…
CycleGan算子概述 基于CycleGAN用于生成域迁移的图像,即将一类图片转换成另一类图片,把X空间中的样本转换成Y空间中的样本。CycleGAN可以利用非成对数据进行训练。模型训练时运行支持两个输入,分别代表数据的原域和目标域,在训…
另存为算法 当您需要修改训练作业的算法时,可以在训练作业详情页面右上角,单击“另存为算法”。 在“创建算法”页面中,会自动填充上一次训练作业的算法参数配置,您可以根据业务需求在原来算法配置基础上进行修改。 在AI Gallery中订阅的算法…
如何查看训练作业资源使用详情 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的…
创建数据处理任务 管理和查看数据处理任务 同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851) 内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家
当您使用预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和训练输出路径参数。这四种输入…
背景信息 对于用户希望优化的超参,需在“超参”设置中定义,可以给定名称、类型、默认值、约束等,具体设置方法可以参考定义超参。 如果用户使用的AI引擎为pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x…
训练作业运行结束后,ModelArts可为您的模型进行评估,并且给出调优诊断和建议。 针对使用预置算法创建训练作业,无需任何配置,即可查看此评估结果(由于每个模型情况不同,系统将自动根据您的模型指标情况,给出一些调优建议,请仔细阅读界面中的…
本章节介绍基于Pytorch引擎的多机多卡数据并行训练。 训练流程简述 相比于DP,DDP能够启动多进程进行运算,从而大幅度提升计算资源的利用率。可以基于torch.distributed实现真正的分布式计算,具体的原理此处不再赘述。大致的…