华为云AI开发平台ModelArts线性回归_云淘科技
概述
“线性回归”节点用于产生线性回归模型。它是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的统计分析方法。
输入
参数 |
子参数 |
参数说明 |
---|---|---|
inputs |
dataframe |
inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 |
输出
spark pipeline类型的模型
参数说明
参数 |
子参数 |
参数说明 |
---|---|---|
b_use_default_encoder |
– |
是否使用默认编码,默认为True |
input_features_str |
– |
输入的列名以逗号分隔组成的字符串,例如: “column_a” “column_a,column_b” |
label_col |
– |
目标列 |
regressor_feature_vector_col |
– |
算子输入的特征向量列的列名,默认为”model_features” |
max_iter |
– |
最大迭代次数,默认为100 |
reg_param |
– |
正则化参数,默认为0.0 |
elastic_net_param |
– |
弹性网络参数,默认为0.0 |
tol |
– |
收敛阈值,默认为1e-6 |
fit_intercept |
– |
是否使用截距,默认为True |
standardization |
– |
是否对特征进行正则化,默认为True |
solver |
– |
优化时采用的处理算法,支持l-bfgs、normal、auto,默认为”auto” |
aggregation_depth |
– |
聚合深度,默认为2 |
loss |
– |
损失函数类型,支持squaredError、huber,默认为”squaredError” |
epsilon |
– |
默认为1.35 |
样例
inputs = { "dataframe": None # @input {"label":"dataframe","type":"DataFrame"} } params = { "inputs": inputs, "b_output_action": True, "b_use_default_encoder": True, # @param {"label": "b_use_default_encoder", "type": "boolean", "required": "true", "helpTip": ""} "input_features_str": "", # @param {"label": "input_features_str", "type": "string", "required": "false", "helpTip": ""} "outer_pipeline_stages": None, "label_col": "", # @param {"label": "label_col", "type": "string", "required": "true", "helpTip": "target label column"} "regressor_feature_vector_col": "model_features", # @param {"label": "regressor_feature_vector_col", "type": "string", "required": "true", "helpTip": ""} "max_iter": 100, # @param {"label": "max_iter", "type": "integer", "required": "true", "range": "(0,2147483647]", "helpTip": ""} "reg_param": 0.0, # @param {"label": "reg_param", "type": "number", "required": "true", "range": "[0.0,none)", "helpTip": ""} "elastic_net_param": 0.0, # @param {"label": "elastic_net_param", "type": "number", "required": "true", "range": "[0.0,none)", "helpTip": ""} "tol": 1e-6, # @param {"label": "tol"", "type": "number", "required": "true", "range": "[0.0,none)", "helpTip": ""} "fit_intercept": True, # @param {"label": "fit_intercept"", "type": "boolean", "required": "true", "helpTip": ""} "standardization": True, # @param {"label": "standardization"", "type": "boolean", "required": "true", "helpTip": ""} "solver": "auto", # @param {"label": "solver", "type": "enum", "required": "true", "options": "l-bfgs,normal,auto", "helpTip": ""} "aggregation_depth": 2, # @param {"label": "aggregation_depth", "type": "integer", "required": "true", "range": "(0,2147483647]", "helpTip": ""} "loss": "squaredError", # @param {"label": "loss", "type": "enum", "required": "true", "options": "squaredError,huber", "helpTip": ""} "epsilon": 1.35 # @param {"label": "epsilon", "type": "number", "required": "true", "range": "(1.0,none)", "helpTip": ""} } linear_regression____id___ = MLSLinearRegression(**params) linear_regression____id___.run() # @output {"label":"pipeline_model","name":"linear_regression____id___.get_outputs()['output_port_1']","type":"PipelineModel"}
父主题: 回归
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家