华为云AI开发平台ModelArts最小最大规范化_云淘科技
概述
将数据集指定的某些数字列,转换到一定的数值范围(例如0和1之间)。
输入
参数 |
子参数 |
参数说明 |
---|---|---|
inputs |
dataframe |
inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 |
输出
数据集
参数说明
参数 |
子参数 |
参数说明 |
---|---|---|
input_features_str |
– |
输入的列名以逗号分隔组成的字符串,例如: “column_a” “column_a,column_b” |
min |
– |
转换后的最小值,默认为0.0 |
max |
– |
转换后的最大值,默认为1.0 |
input_vector_column |
– |
输入的向量列的列名,默认为”input_features” |
output_vector_column |
– |
结果输出的向量列的列名,默认为”output_scaler_features” |
样例
inputs = { "dataframe": None # @input {"label":"dataframe","type":"DataFrame"} } params = { "inputs": inputs, "b_output_action": True, "outer_pipeline_stages": None, "input_features_str": "", # @param {"label":"input_features_str","type":"string","required":"false","helpTip":""} "min": 0.0, # @param {"label": "min","type":"number","required":"true","range":"(none,none)","helpTip":""} "max": 1.0, # @param {"label":"max","type":"number","required":"true","range":"(none,none)","helpTip":""} "input_vector_column": "input_features", # @param {"label":"input_vector_column","type":"string","required":"true","helpTip":""} "output_vector_column": "minmax_scaler_features" # @param {"label":"output_vector_column","type":"string","required":"true","helpTip":""} } min_max_scaler____id___ = MLSMinMaxScaler(**params) min_max_scaler____id___.run() # @output {"label":"pipeline_model","name":"min_max_scaler____id___.get_outputs()['output_port_1']","type":"PipelineModel"} # @output {"label":"dataframe","name":"min_max_scaler____id___.get_outputs()['output_port_2']","type":"DataFrame"}
父主题: 特征工程
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家