华为云AI开发平台ModelArtsTensorFlow 2.1_云淘科技
训练并保存模型
from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.2), # 对输出层命名output,在模型推理时通过该命名取结果 tf.keras.layers.Dense(10, activation='softmax', name="output") ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10) tf.keras.models.save_model(model, "./mnist")
推理代码
在模型代码推理文件customize_service.py中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如请参考表1。
import logging import threading import numpy as np import tensorflow as tf from PIL import Image from model_service.tfserving_model_service import TfServingBaseService logger = logging.getLogger() logger.setLevel(logging.INFO) class MnistService(TfServingBaseService): def __init__(self, model_name, model_path): self.model_name = model_name self.model_path = model_path self.model = None self.predict = None # label文件可以在这里加载,在后处理函数里使用 # label.txt放在obs和模型包的目录 # with open(os.path.join(self.model_path, 'label.txt')) as f: # self.label = json.load(f) # 非阻塞方式加载saved_model模型,防止阻塞超时 thread = threading.Thread(target=self.load_model) thread.start() def load_model(self): # load saved_model 格式的模型 self.model = tf.saved_model.load(self.model_path) signature_defs = self.model.signatures.keys() signature = [] # only one signature allowed for signature_def in signature_defs: signature.append(signature_def) if len(signature) == 1: model_signature = signature[0] else: logging.warning("signatures more than one, use serving_default signature from %s", signature) model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY self.predict = self.model.signatures[model_signature] def _preprocess(self, data): images = [] for k, v in data.items(): for file_name, file_content in v.items(): image1 = Image.open(file_content) image1 = np.array(image1, dtype=np.float32) image1.resize((28, 28, 1)) images.append(image1) images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32) preprocessed_data = images return preprocessed_data def _inference(self, data): return self.predict(data) def _postprocess(self, data): return { "result": int(data["output"].numpy()[0].argmax()) }
父主题: 自定义脚本代码示例
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家