华为云AI开发平台ModelArts最小二乘法_云淘科技
概述
ALS(交替最小二乘)是一种求解矩阵分解问题的最优化方法。
“交替最小二乘”节点用于推荐,它通过矩阵分解手段快速实现用户对物品评分的预测。
输入
参数 |
子参数 |
参数说明 |
---|---|---|
inputs |
dataframe |
inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 |
输出
spark pipeline类型的模型
参数说明
参数 |
子参数 |
参数说明 |
---|---|---|
user_col |
– |
用户id所在的列名 |
item_col |
– |
项目id所在的列名 |
rating_col |
– |
评分所在的列名 |
recommend_nums |
– |
推荐物品的个数,默认为10 |
prediction_col |
– |
预测列列名,默认为”prediction” |
cold_start_strategy |
– |
冷启动策略,默认为”nan” |
alpha |
– |
矩阵分解的正则化系数,默认为1.0 |
implicit_prefs |
– |
是否使用隐含偏好,默认为Flase |
max_iter |
– |
最大迭代次数,默认为50 |
non_negative |
– |
是否使用非负限制,默认为False |
rank |
– |
因子分解的秩,默认为10 |
reg_param |
– |
正则化系数,默认为0.0 |
样例
inputs = { "dataframe": None # @input {"label":"dataframe","type":"DataFrame"} } params = { "inputs": inputs, "user_col": "", # @param {"label":"user_col","type":"string","required":"true","helpTip":""} "item_col": "", # @param {"label":"item_col","type":"string","required":"true","helpTip":""} "rating_col": "", # @param {"label":"rating_col","type":"string","required":"true","helpTip":""} "recommend_nums": 10, # @param {"label":"recommend_nums","type":"integer","required":"false","range":"(0,2147483647)","helpTip":""} "prediction_col": "prediction", # @param {"label":"prediction_col","type":"string","required":"false","helpTip":""} "cold_start_strategy": "nan", # @param {"label":"cold_start_strategy","type":"string","required":"false","helpTip":""} "alpha": 1, # @param {"label":"alpha","type":"number","required":"false","range":"(none,none)","helpTip":""} "implicit_prefs": False, # @param {"label":"implicit_prefs","type":"boolean","required":"false","helpTip":""} "max_iter": 10, # @param {"label":"max_iter","type":"integer","required":"false","range":"(0,2147483647)","helpTip":""} "non_negative": False, # @param {"label":"non_negative","type":"boolean","required":"false","helpTip":""} "rank": 10, # @param {"label":"rank","type":"integer","required":"false","range":"(0,2147483647)","helpTip":""} "reg_param": 0.1 # @param {"label":"reg_param","type":"number","required":"false","range":"(none,none)","helpTip":""} } als____id___ = MLSALS(**params) als____id___.run() # @output {"label":"pipeline_model","name":"als____id___.get_outputs()['output_port_1']","type":"PipelineModel"} # @output {"label":"dataframe","name":"als____id___.get_outputs()['output_port_2']","type":"DataFrame"}
父主题: 推荐
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家