华为云AI开发平台ModelArts标准化_云淘科技
概述
对数据集的某些数值列,根据均值和方差进行标准化。
输入
参数 |
子参数 |
参数说明 |
---|---|---|
inputs |
dataframe |
inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 |
输出
数据集
参数说明
参数 |
子参数 |
参数说明 |
---|---|---|
input_features_str |
– |
输入的特征列名以逗号分隔组成的格式化字符串,例如: “column_a” “column_a,column_b” |
input_vector_column |
– |
算子输入的向量列的列名,默认为”input_features” |
output_vector_column |
– |
算子输出的向量列的列名,默认为”standard_features” |
with_std |
– |
是否按照方差进行标准化,默认为True |
with_mean |
– |
是否按照均值进行标准化,默认为False |
样例
inputs = { "dataframe": None # @input {"label":"dataframe","type":"DataFrame"} } params = { "inputs": inputs, "b_output_action": True, "outer_pipeline_stages": None, "input_features_str": "", # @param {"label":"input_features_str","type": "string","required":"false","helpTip": ""} "input_vector_column": "input_features", # @param {"label":"input_vector_column","type":"string","required":"true","helpTip":""} "output_vector_column": "standard_features", # @param {"label":"output_vector_column","type":"string","required":"true","helpTip":""} "with_std": True, # @param {"label":"with_std","type":"boolean","required":"true","helpTip":""} "with_mean": False # @param {"label":"with_mean","type":"boolean","required":"true","helpTip":""} } standard_scaler____id___ = MLSStandardScaler(**params) standard_scaler____id___.run() # @output {"label":"pipeline_model","name":"standard_scaler____id___.get_outputs()['output_port_1']","type":"PipelineModel"} # @output {"label":"dataframe","name":"standard_scaler____id___.get_outputs()['output_port_2']","type":"DataFrame"}
父主题: 特征工程
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家