华为云AI开发平台ModelArts离散化_云淘科技
概述
根据用户输入的桶的个数,按照分位数分桶,将用户指定的某个数值列离散化。
输入
参数 |
子参数 |
参数说明 |
---|---|---|
inputs |
dataframe |
inputs为字典类型,dataframe为pyspark中的DataFrame类型对象 |
输出
数据集
参数说明
参数 |
子参数 |
参数说明 |
---|---|---|
input_col |
– |
输入的列名 |
output_col |
– |
离散化后输出的列名,默认为”quantile_discretizer_result” |
num_buckets |
– |
桶的个数,默认为2 |
handle_invalid |
– |
处理无效值的策略,支持skip、keep、error,默认为skip |
relative_error |
– |
相对错误值,取值范围是[0, 1],默认为0.001 |
样例
inputs = { "dataframe": None # @input {"label":"dataframe","type":"DataFrame"} } params = { "inputs": inputs, "b_output_action": True, "outer_pipeline_stages": None, "input_col": "", # @param {"label":"input_col","type":"string","required":"true","helpTip":""} "output_col": "quantile_discretizer_result", # @param {"label":"output_col","type":"string","required":"true","helpTip":""} "num_buckets": 2, # @param {"label":"num_buckets","type":"integer","required":"true","range":"(0,2147483647]","helpTip": ""} "handle_invalid": "skip", # @param {"label":"handle_invalid","type":"enum","options":"skip,keep,error","required":"true","helpTip":""} "relative_error": 0.001 # @param {"label":"relative_error","type":"number","required":"true","range":"[0,1]","helpTip":""} } quantile_discretizer____id___ = MLSQuantileDiscretizer(**params) quantile_discretizer____id___.run() # @output {"label":"dataframe","name":"quantile_discretizer____id___.get_outputs()['output_port_1']","type":"DataFrame"}
父主题: 特征工程
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家