华为云AI开发平台ModelArtsTensorFlow_云淘科技
TensorFlow存在两种接口类型,keras接口和tf接口,其训练和保存模型的代码存在差异,但是推理代码编写方式一致。
训练模型(keras接口)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from keras.models import Sequential model = Sequential() from keras.layers import Dense import tensorflow as tf # 导入训练数据集 mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print(x_train.shape) from keras.layers import Dense from keras.models import Sequential import keras from keras.layers import Dense, Activation, Flatten, Dropout # 定义模型网络 model = Sequential() model.add(Flatten(input_shape=(28,28))) model.add(Dense(units=5120,activation='relu')) model.add(Dropout(0.2)) model.add(Dense(units=10, activation='softmax')) # 定义优化器,损失函数等 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() # 训练 model.fit(x_train, y_train, epochs=2) # 评估 model.evaluate(x_test, y_test) |
保存模型(keras接口)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from keras import backend as K # K.get_session().run(tf.global_variables_initializer()) # 定义预测接口的inputs和outputs # inputs和outputs字典的key值会作为模型输入输出tensor的索引键 # 模型输入输出定义需要和推理自定义脚本相匹配 predict_signature = tf.saved_model.signature_def_utils.predict_signature_def( inputs={"images" : model.input}, outputs={"scores" : model.output} ) # 定义保存路径 builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/') builder.add_meta_graph_and_variables( sess = K.get_session(), # 推理部署需要定义tf.saved_model.tag_constants.SERVING标签 tags=[tf.saved_model.tag_constants.SERVING], """ signature_def_map:items只能有一个,或者需要定义相应的key为 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY """ signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature } ) builder.save() |
训练模型(tf接口)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from __future__ import print_function import gzip import os import urllib import numpy import tensorflow as tf from six.moves import urllib # 训练数据来源于yann lecun官方网站http://yann.lecun.com/exdb/mnist/ SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size)) return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting %s' % filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting %s' % filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): """Class encompassing test, validation and training MNIST data set.""" def __init__(self, images, labels, fake_data=False, one_hot=False): """Construct a DataSet. one_hot arg is used only if fake_data is true.""" if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in range(batch_size)], [ fake_label for _ in range(batch_size) ] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False): """Return training, validation and testing data sets.""" class DataSets(object): pass data_sets = DataSets() if fake_data: data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot) data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot) data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot) return data_sets local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels) data_sets.validation = DataSet(validation_images, validation_labels) data_sets.test = DataSet(test_images, test_labels) return data_sets training_iteration = 1000 modelarts_example_path = './modelarts-mnist-train-save-deploy-example' export_path = modelarts_example_path + '/model/' data_path = './' print('Training model...') mnist = read_data_sets(data_path, one_hot=True) sess = tf.InteractiveSession() serialized_tf_example = tf.placeholder(tf.string, name='tf_example') feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), } tf_example = tf.parse_example(serialized_tf_example, feature_configs) x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name y_ = tf.placeholder('float', shape=[None, 10]) w = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.nn.softmax(tf.matmul(x, w) + b, name='y') cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) values, indices = tf.nn.top_k(y, 10) table = tf.contrib.lookup.index_to_string_table_from_tensor( tf.constant([str(i) for i in range(10)])) prediction_classes = table.lookup(tf.to_int64(indices)) for _ in range(training_iteration): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) print('training accuracy %g' % sess.run( accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels })) print('Done training!') |
保存模型(tf接口)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
# 导出模型 # 模型需要采用saved_model接口保存 print('Exporting trained model to', export_path) builder = tf.saved_model.builder.SavedModelBuilder(export_path) tensor_info_x = tf.saved_model.utils.build_tensor_info(x) tensor_info_y = tf.saved_model.utils.build_tensor_info(y) # 定义预测接口的inputs和outputs # inputs和outputs字典的key值会作为模型输入输出tensor的索引键 # 模型输入输出定义需要和推理自定义脚本相匹配 prediction_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={'images': tensor_info_x}, outputs={'scores': tensor_info_y}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder.add_meta_graph_and_variables( # tag设为serve/tf.saved_model.tag_constants.SERVING sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ 'predict_images': prediction_signature, }, legacy_init_op=legacy_init_op) builder.save() print('Done exporting!') |
推理代码(keras接口和tf接口)
在模型代码推理文件customize_service.py中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如请参考表1。本案例中调用父类“_inference(self, data)”推理请求方法,因此下文代码中不需要重写方法。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from PIL import Image import numpy as np from model_service.tfserving_model_service import TfServingBaseService class MnistService(TfServingBaseService): # 预处理中处理用户HTTPS接口输入匹配模型输入 # 对应上述训练部分的模型输入为{"images":} def _preprocess(self, data): preprocessed_data = {} images = [] # 对输入数据进行迭代 for k, v in data.items(): for file_name, file_content in v.items(): image1 = Image.open(file_content) image1 = np.array(image1, dtype=np.float32) image1.resize((1,784)) images.append(image1) # 返回numpy array images = np.array(images,dtype=np.float32) # 对传入的多个样本做batch处理,shape保持和训练时输入一致 images.resize((len(data), 784)) preprocessed_data['images'] = images return preprocessed_data # 对应的上述训练部分保存模型的输出为{"scores":} # 后处理中处理模型输出为HTTPS的接口输出 def _postprocess(self, data): infer_output = {"mnist_result": []} # 迭代处理模型输出 for output_name, results in data.items(): for result in results: infer_output["mnist_result"].append(result.index(max(result))) return infer_output |
父主题: 自定义脚本代码示例
同意关联代理商云淘科技,购买华为云产品更优惠(QQ 78315851)
内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家